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Abstract 
Contractor prequalification has been an important issue in construction business practice and academic 

research studies for quite a long time. The main objective of contractor prequalification is to differentiate 

contractors that have the necessary financial, physical, and human resources to undertake construction 
work for those that do not have such resources. This objective is commonly achieved by using either 

statistics-based or machine learning-based classification methods.  A succinct review of previous 

contractor prequalification models revealed that there is no comparative study available in the 
construction management literature for evaluating the relative performance of the various classification 

methods. The research presented in this paper addressed this missing research issue by using simulation 

experiments to compare the relative classification performances of logistic regression (LR), artificial 

neural networks (ANNs), and support vector machines (SVMs) for the combinations of two different data 
characteristics, i.e., 1) the strength of correlation between input variables and 2) the complexity of the 

functional relationships between input variables and the output variable. The results of the simulations 

suggested that SVMs consistently outperformed ANNs and LR. 
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1. Introduction 
 
Mitigating contractual hazards (e.g., cost overruns, schedule delays, quality and functionality that do not 

meets the owners’ expectations, lawsuits, and defaulted contractors and subcontractors) in organizations 

that conduct construction projects has been a subject of numerous research streams in the literature (Holt, 

1998; Waara, 2008; Schatteman et al., 2008; Badenfelt, 2011). The selection of transaction partners (i.e., 
contractors, subcontractors, material vendors) is one of the primary means to mitigate contractual hazards 

in the construction industry, just as it is in any other industry. As a rational response to the needs of the 

social entities of the construction industry, construction management scholars have been involved in 
developing prequalification models for the use of clients (Hatush & Skitmore, 1998; Khosrowshahi, 1999; 

Lam et al., 2001; El-Sawalhi et al., 2007; Darvish et al., 2009; Nieto-Morote & Ruz-Vila, 2012), 

contractors (Ko et al., 2007; Arslan et al., 2008), and sureties (Awada & Fayek, 2012). A succinct review 
of the literature revealed that the majority of the previous models used to select transaction partners were 

developed for the use of clients (Hatush & Skitmore, 1998; Khosrowshahi, 1999; Lam et al., 2001; El-

Sawalhi et al., 2007; Darvish et al., 2009; Nieto-Morote & Ruz-Vila, 2012). The different clients of the 

construction industry, i.e., public, private, experienced, inexperienced, and once-in-a-lifetime clients, face 
significant contractual hazards in their transactions with contractors mainly due to high degree of 



uncertainty and asset specifity involved in these transactions. Contractor prequalification enables clients 

to mitigate contractual hazards by eliminating incompetent, underfinanced, inexperienced contractors 
from further consideration. It also enables contractors to benchmark their financial status and technical 

abilities externally and, in turn, improve their performance during construction. Contractor 

prequalification is a binary classification (i.e., qualified or unqualified) problem.  

 
Different classification methods have been used to develop contractor prequalification models. The extant 

literature clearly indicates that the performances of these classification methods have been an important 

issue. In the literature related to construction management, it is very common  to find various arguments 
or conclusions, e.g., (1) the cluster analysis method has the highest potential for contractor 

prequalification problems (Holt, 1998), (2) artificial neural networks produce the best predictive 

performance for contractor prequalification problems (El-Sawalhi, Eaton, & Rustom, 2007), and (3) 
support vector machines produce better performance than artificial neural networks and logistic 

regression models (Lam et al., 2009). Yet, the majority of such arguments or conclusions is based on 

either intuition or the real data sets collected from construction clients through questionnaire surveys 

rather than properly designed simulation experiments. Also, it is acknowledged extensively in the 
literature that there is not necessarily a single best classification method; rather, the best performing 

classification method depends on the characteristics of the dataset to be analyzed. In the light of this 

background, it is evident that a study based on properly-designed simulation experiments for the 
classification methods used in the past prequalification models under various combinations of data 

characteristics is a topical issue that has remained unaddressed in the literature concerning construction 

management. The study presented in this paper was intended to address this topical issue in the context of 
contractor prequalification models.  Its primary objectives were (1) to explore the influence of the 

characteristics of the dataset (i.e., the strength of correlation between input variables and model 

complexity) on the performance-classification methods in the context of contractor prequalification 

problems and (2) to guide construction management researchers in the selection of the optimal 
classification method using a given dataset of characteristics. 

 

2. Contractor Prequalification 
 

Contractor prequalification is the process of screening contractors to construct a pool (sample) of 

competitive, competent, and capable contractors from which tenders can be requested for the subsequent 
award of the construction contract (Lam et al., 2005).  The primary objectives of the contractor 

prequalification include (1) eliminating incompetent and unresponsive contractors, (2) enhancing 

opportunities for competent and responsive contractors, (3) creating fair competition among competent 
and responsive contractors, and (4) achieving balance between price competition and project 

performance. Contractor prequalification is a binary classification problem. Even so, some construction 

management scholars have approached the contractor prequalification problem as a ranking problem and 

used multi-criteria decision-making models, such as the analytical hierarchy process (Anagnostopoulos & 
Vavatsikos, 2006), the analytical network process (Cheng & Li, 2004), evidential reasoning (Sönmez et 

al., 2002). Some other construction management scholars have assumed that contractor prequalification is 

a utility problem and have applied multi-attribute analysis (Holt et al., 1994) or multi-attribute utility 
theory concepts to contractor prequalification problems (Hatush & Skitmore, 1998).  Only a few 

construction management scholars have approached the contractor prequalification problem as a 

classification problem and used classification methods, such as cluster analysis (Holt, Classifying 
construction contractors: a case study using cluster analysis, 1997), logistic regression (Wong, 2004), 

unsupervised-learning neural networks (Elazouni, 2006), supervised artificial neural networks 

(Khosrowshahi, 1999; El-Sawalhi et al., 2007), and support vector machines (Lam et al., 2009). 

 

3. Classification Methods 
 



Classification probably is one of the oldest problems of humankind.  It involves the process of assigning 

observations (i.e., objects, social entities) into one of a set of groups based on their attributes.  
Classification has been used extensively in addressing and solving a variety of practical problems in 

various research fields (e.g., basic science, applied science, and social sciences).  The primary objective 

of classification is to group observations correctly into two or more mutually-exclusive groups.  Several 

grouping schemes have been proposed for studying classification methods, such as (1) supervised vs. 
unsupervised classification methods (Hastie et al., 2008) and (2) statistics vs. machine learning-based 

classification methods.  Supervised classification methods (e.g., linear discriminant analysis, quadratic 

discriminant analysis, logistic regression, and support vector machines) involve assigning future 
observations correctly to groups that are already known to exist (Johnson & Wichern, 2002).  Conversely, 

unsupervised classification methods (e.g., cluster analysis and unsupervised artificial neural networks) 

involve the process of assigning observations to groups that are not known a priori.  Statistics-based 
classification methods, also known as classical classification methods, subsume a number of methods that 

differ with respect to their assumptions (e.g., group distribution and functional form of the 

discrimination). Statistics-based classification models that have strict assumptions, such as normality and 

linearity, are viewed as fully-parametric classification models, whereas models that have less restrictive 
assumptions are viewed as semi-parametric (e.g., k-nearest neighborhood, linear programming, and 

logistic regression). Machine learning-based classification models are less restrictive and do not require 

such assumptions (normality and linearity). A review of the classification methods used in past 
prequalification models indicated that the most commonly used statistics-based classification method is 

logistic regression, whereas the most commonly used machine-learning methods are artificial neural 

networks (ANNs) and support vector machines.  The following section presents an overview of these 
three classification methods. 

 

3.1 Logistic Regression 

 
Logistic regression is a semi-parametric, statistics-based classification method that is commonly used to 

predict the probability of the occurrence of a dichotomous variable from one or more independent (i.e., 

exploratory factors) variables. It uses odds and the logistic transformation of odds to link the probability 
of occurrence or non-occurrence of a dichotomous variable (e.g., contractor being prequalified or 

disqualified) to the independent variables (e.g., prequalification criteria). The odds are the ratio of the 

probability of occurrence to the probability of non-occurrence of a dichotomous variable: 
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)                                                                   [1] 

where P is the probability of occurrence.  The logistic transformation for the odds of the occurrence of a 

dichotomous variable can be written as: 
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where xi ( i = 1, 2, …, k) is the i
th
 independent variable, α is a constant, and βi is the coefficient of the i

th
 

independent variable.  A cutoff value of 0.50 is commonly used in logistic regression models. 

 

3.2 Artificial Neural Networks 

 
Artificial neural network models are powerful, flexible, and intuitive data analysis approaches for 

capturing and identifying the complex relationships between input/independent variables and output/ 

dependent variables.  An artificial neural network consists of (1) an input layer, (2) an output layer, and 
(3) one or more hidden layers.  Each layer comprises one or more neuron and each neuron is linked to the 

other neurons in neighboring layers by varying weight coefficients. A neuron receives input signals, 

processes those signals, and delivers a single output. The following tasks are performed by a neuron in 

processing its input signals: (1) receiving input signals from other neurons, (2) multiplying input signals 
by corresponding weights, (3) summing weighted input signals, (4) transforming the computed sum by a 



transfer function, and (5) sending the transformed sum to other neurons. In mathematical terms, this 

process for neuron j can be described by the following equations (Russell and Norvig, 2003): 
 

   ∑           
 
                                                             [3] 

where vj is the net input to neuron j, xi is the incoming signal from neuron i, wji is the weight associated 
with the input from neuron i, n is the number of neurons in preceding layer, and bj is the bias associated 

with neuron j. 

    (  )                                                                                   [4] 

where yj is the output of neuron j (also termed as the activation value of neuron j), and φ is an activation 

function to generate the outgoing signal of neuron j.  Activation functions (φ) can be linear or non-linear, 
such as an identity, hyperbolic tangent, logistic, exponential, sine, or Gaussian function.   

 

3.3 Support Vector Machines 

 

Support vector machines, like artificial neural networks, use supervised learning algorithms.  A support 

vector machine is a type of maximal margin classifier that aims to construct an optimal separating 

hyperplane, f(x), that maximizes the margin between the two classes, yi ϵ {-1,1}.  For a linearly separable 
classification problem, the optimal separating hyperplane can be defined as (Vapnik, 1998): 

            ∑            
                        [5] 

where xi is the n-dimensional input vector (xi ϵR
n
), w is the normalized weight vector, and b is the 

normalized bias term.  Any optimal separating hyperplane should satisfy the following constraint: 

                                                                            [6] 

In many real-world problems, data are not linearly separable, which is due mainly to nonlinearity, noise, 

and contamination.  In such cases, an optimum separating hyperplane cannot be constructed without error.  
Support machine vectors use (1) the soft margin method or (2) the kernel function method to address this 

issue.  Soft margin method-based support vector machines introduce the slack variable into Equation 7: 

                                                [7] 
where ζi is the positive slack variable that specifies the distance from the upper and lower boundary of the 

optimum separating hyperplane (i.e., soft margin).  The construction of the optimal separating hyperplane 

can be expressed as the following optimization problem: 
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where C is a positive constant that determines the trade-off between classification error and the margin.  

Equation 9 can be solved more easily by introducing the Langrange multipliers αi and αj: 
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where 〈     〉 is the inner product of         Finally, the linear optimization function for the optimum 

separating hyperplane can be written as: 

          (∑               
     )                                    [10] 

Kernel method-based SVM maps the original input data into a much higher dimensional feature space by 
using a non-linear mapping function, Ø(x), and then constructs the optimal separating hyperplane in this 

feature space similar to the one used in the linearly-separable classification problem. 

          (∑                 
     )                              [11] 

Yet, selecting an appropriate non-linear function, Ø(x), and the computation of the inner product of 
〈       〉 in the feature space can easily become computationally challenging or even infeasible to 

perform. This computational challenge can be overcome by substituting the inner product of            
with a kernel function K(xi,yj).  The optimization problem of finding the optimum separating hyperplane 

in a high-dimensional feature space by using a kernel function can be defined as: 



          (∑               
     )                                   [12] 

Support vector machines use different kernel functions, such as (1) linear kernel functions, (2) polynomial 

kernel functions, (3) sigmoid kernel functions, and (4) radial basis functions (RBFs).  Each kernel 

function has one or more parameters that must be optimized. The radial basis function, also known as 
Gaussian kernel, is the most common kernel function used in support vector machines due its 

classification ability and relatively lower computation load. Radial basis kernel function can be defined 

as: 
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where   is the user-defined width parameter of the Radial basis kernel. 

 

4. Data and Methods 
 

In the research presented in this paper, a number of simulation experiments were conducted to compare 

the performance of one statistics-based classification method, i.e., Logistic Regression (LR), and two 
machine-learning based methods, i.e., artificial neural networks (ANNs) and support vector machines 

(SVMs), in the context of the contractor prequalification problem.  The impacts of correlation levels 

between input variables (Ω) and model complexity on the classification method were analyzed by the 
generation of simulated data. In the simulations, a sample size of 500 observations (N = 500), 10 input 

variables (xi,  i = 1, 2 …, k, and k = 10), one binary output variable (i.e., qualified and unqualified), and 

three different correlation levels (Ω) between input variables and three levels of model complexity were 

used.  A total of nine data sets (i.e., three correlation levels and model complexity levels: 3X3) were 
generated through simulations.  Each simulated data set consisted of 500 observations and had 10 input 

variables (xi), which were generated from a multivariate normal distribution with a mean of 0 (μ = 0), a 

standard deviation of 1 (σ = 1), and a pre-defined correlation level (Ω) between input variables.  The three 
different correlation levels (Ω) used in the simulations were (1) weak, (2) moderate, and (3) strong.  The 

correlation levels between input variables ranged from 0.05 to 0.30 for the weak correlation level, 0.40 to 

0.60 for the moderate correlation level, and 0.70 to 0.90 for the strong correlation level. Three levels of 
model complexity were analyzed by assuming that the true relationship between the 10 input variables 

(xi) and the binary output (y) was a logistic function. The complexity levels of the models used in the 

simulations increased in the following order: (1) linear model, (2) simple model, and (3) complex model. 

 
For the linear model: 
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For the simple model: 
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For the complex model: 
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The parameters of artificial neural networks (i.e., the number of hidden layers, the number of neurons in 

the hidden layers, and the activation functions for the input and output layers) and support vector 
machines (i.e., capacity and the width parameter of the Radial basis kernel) were optimized for each 

simulated data set to provide the best classification accuracy.  The classification accuracies of logistic 



regression, artificial neural networks, and support vector machines in each simulation were evaluated by 

using the receiver operating characteristics (ROC) curve method. The ROC curve method is a simple, but 
powerful, test to evaluate the discrimination performance of a binary classification method. It has been 

used extensively in previous studies to compare the accuracies of classification methods.  The ROC curve 

method, which is based on signal processing theory, is a plot of sensitivity versus 1-specifity evaluated at 

different cut-off points of a parameter. Sensitivity, also known as true positive rate (TPR), is a measure of 
positive cases (i.e., prequalified contractors) being correctly identified as positive cases (i.e., prequalified 

contractors) by a classification method. Specificity, also known as true negative rate (TNR), is a measure 

of negative cases (i.e., unqualified contractors) being correctly identified as negative cases (unqualified 
contractors) by a classification method. The area under the ROC curve ranges 1 to 0.5, with a value of 1.0 

indicating perfect discriminatory power and a value of 0.5 indicating poor classification performance. 

 

5. Results 
 

Table 1 presents the values for the area under the ROC curves for logistic regression, artificial neural 

networks, and support vector machines by model complexity and correlation strength.  It is clear from 
Table 1 that the level of complexity of the model and the strength of the correlations between input 

variables jointly affect the classification performance of logistic regression, artificial neural networks, and 

support vector machines.  Support vector machines have the highest values for the area under the ROC 
curve, followed by artificial neural networks and logistic regression, in that order.  The values of the area 

under the ROC curve for logistic regression ranged from a minimum of 0.51 for the complex model with 

moderately-correlated input variables to a maximum of 0.97 for the linear model with strongly-correlated 
input variables.  It also was evident from the values of the area under the ROC curve that the 

classification performance of logistic regression decreased drastically as the complexity of the models 

increased and the strength of the correlations between the input variables decreased.  Similar observations 

also were made for artificial neural networks and support vector machines, but the decreases in their 
classification performances were not as drastic as in the case of logistic regression.  Furthermore, it 

appeared that the classification performance of logistic regression was almost as good as those of artificial 

neural networks and support vector machines when the input variables were correlated strongly with each 
other and had linear relationships with the output variables.  Table 1 also points out that the classification 

performances of support vectors machines were marginally better than those of artificial neural networks 

for both linear and simple models. Yet, the classification performances of support vector machines for the 

complex models with weak, moderate, and strong correlation levels were significantly better than those of 
artificial neural networks. 

 

Table 1: Values of Areas Under the ROC Curves for Classification Methods by Model Complexity and 
Correlation Level 

Model 

Complexity 
Correlation Level 

Method 

LR  ANN SVM  

 
Linear 

Weak 0.93***  0.94*** 0.96*** 

Moderate 0.96***  0.98*** 0.98*** 

Strong 0.98***  0.99*** 0.99*** 

 

Simple 

Weak 0.80*** 0.84*** 0.85*** 

Moderate 0.81*** 0.85*** 0.89*** 

Strong 0.88*** 0.90*** 0.92*** 

 

Complex 

Weak 0.53*** 0.71*** 0.76*** 

Moderate 0.50*** 0.67*** 0.74*** 

Strong 0.56*** 0.67*** 0.79*** 

  *p≤0.01 and **≤0.05 
 

It is clear from the results of the simulation experiments that logistic regression has the lowest 

classification performance under the various combinations of data characteristics, whereas artificial neural 



networks and support vector machines demonstrated relatively high classification performance, albeit 

with two major challenges.  First, the classification performances of these two models depended critically 
on their parameters being set correctly, i.e., kernel parameters for SVM and, for ANN, the number of 

hidden layers, the number of neurons in the hidden layers, and the activation functions. Second, the 

relative importance of input variables used in the models cannot be interpreted or inferred easily without 

conducting additional analyses. Conversely, logistic regression had the greater ease of use and simplicity 
in interpreting its results (i.e., coefficients of input variables and odds).  Therefore, construction 

management researchers who are planning to develop a contractor prequalification model should be 

aware of the trade-off between classification performance of a model and interpretability of the results 
provided by that model. 

 

 

6. Conclusions 
 

For decades, contractor prequalification has been an important issue in the construction management 
research and construction business practice. It is commonly conceptualized as a binary classification 

problem, and various classification methods, including logistic regression, artificial neural networks, and 

support vector machines, have been used to develop contractor prequalification models. Previous models 
predominantly have used survey data either to develop a contractor prequalification model or to compare 

one classification method with others. In the research described in this paper, a systematic approach was 

used to compare the classification performance of three classification methods under various 

combinations of data characteristics. Several simulation experiments were conducted to explore the 
impact of data characteristics on the classification performance of logistic regression, artificial neural 

networks, and support vector machines. The results indicated that the support vector machine provided 

the best performance under all of the combinations of data characteristics that were studied in the 
simulation experiments. The results of the simulation experiments suggest that, among the three 

classification methods that were evaluated, support vector machines may be the best for addressing 

contractor prequalification problems.  One promising future research avenue would be to extend the scope 
of the simulation experiments to include the assessment of the effects of other data characteristics, such as 

sample size, variance of the input variables, and group size ratio, on the classification performances of 

logistic regression, artificial neural networks, and support vector machines. 
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